

Note

Solvent free Stobbe condensation: A green approach

Shubhra Banerjee*, Ravibabu A Tayde & Bhagyashree D Sharma

Department of Chemistry, Institute of Science

Nagpur 440 001, India

E-mail: shubhrais@rediffmail.com

Received 21 July 2008; accepted (revised) 4 February 2009

Solvent free Stobbe-condensation of methyl β benzoyl propionate **1c** and methyl β -naphthoyl propionate **1d** with benzaldehyde, anisaldehyde and furfural using dry solid potassium tertiary butoxide at room temperature and at 80°C gives β arylidene β benzoyl propionic acid **2a-c** and β arylidene β naphthoyl propionic acid **2d-f** respectively. Base-catalysed solvent free Stobbe condensation of dimethyl succinate **1e** and aliphatic and aromatic ketones at room temperature gives 1,1-alkylidene monomethyl succinate **3a,b** and 1,1-arylidene monomethyl succinate **3c** respectively.

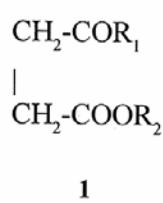
Keywords: Stobbe reaction, solvent-free method, classical method

The present work describes a simple and convenient method (economical, hazard-free and eco-friendly) for Stobbe condensation¹.

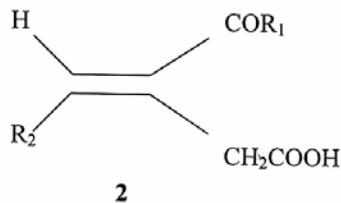
β -Benzoyl propionic acid **1a** (Ref. 2) was found to be a very exciting molecule with remarkable properties having two reactive methylenes as it underwent Perkin condensation at the α -methylene and also Stobbe condensation at the β methylene³.

Under the green aspect, where the solvent is omitted and reaction proceeds smoothly in the presence of solid base (potassium *tert.* butoxide, in this case), Stobbe reaction⁴⁻⁸, an important C-C bond forming reaction⁹⁻¹¹ was carried out using different aromatic aldehydes. Stobbe condensation under solvent-free conditions using solid potassium *tert.* butoxide was done with methyl β -benzoyl propionate and benzaldehyde, anisaldehyde, furfural when the products **2a**, **2b** and **2c** were obtained respectively. The same reaction was tried using methyl β -naphthoyl propionate when the condensation with benzaldehyde, anisaldehyde and furfural gave **2d**, **2e** and **2f** respectively. The same products **2a-f** were also obtained in better yields when the solvent free Stobbe

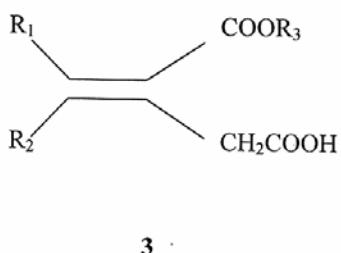
condensation were carried out at 80°C. The previous workers did the classical Stobbe condensation of **1c** with benzaldehyde where the product **2a** was obtained³. We tried the classical Stobbe condensation of **1c** with anisaldehyde and furfural when the products **2b** and **2c** were obtained respectively.


Stobbe condensation under solvent-free conditions using solid potassium tertiary butoxide was done by us with dimethyl succinate **1e** and different aliphatic (acetone, ethyl methyl ketone) and aromatic (acetophenone) ketones, the acid-ester products being the same as with classical method carried out by the previous workers¹². Previously¹², the non-separable mixture of the stereoisomers¹³ in the acid-ester product of the acetophenone condensation (in butanol-butoxide base), namely, 1,1-methyl benzylidene monomethyl succinate **3c** was saponified to the corresponding diacid **3f** (*E* and *Z* isomeric mixture); where the *E* and *Z* isomers were obtained in the ratio 90:10 [the *Z*-isomer being identified by the cyclization of the same with conc. H₂SO₄ into a corresponding indenone **4**]. However, we got non-separable isomeric acid-ester products, by solvent-free method, which could be saponified into *E-Z* mixture of the corresponding diacid **3f**. After recrystallization, the isomers were separated into different types of crystals collected by hand-picking in the ratio 60:40 (confirmed by weight measurement method). When the Stobbe condensation was carried out with dimethyl succinate and ethyl methyl ketone under solvent-free conditions, crystallized acid-ester product showed doubling of peaks in the NMR spectra¹⁴ indicating the presence of both *E* and *Z* non-separable isomers (**Figure 1**).

Experimental Section


¹H NMR spectra were recorded in CDCl₃ on a Perkin-Elmer R-32 spectrometer using TMS as internal standard, IR spectra in KBr pellets and Nujol-mull and UV-Vis spectra in spectroscopic ethanol on a DMS-80 (Varian) spectrophotometer.

β -Arylidene β -aryloyl propionic acid, **2a-f**


To an *in-situ* generated potassium tertiary butoxide solution formed by dissolving 1 g potassium in 25 mL

- a** : $\text{R}_1, \text{R}_2 = \text{Ph}, \text{H}$
- b** : $\text{R}_1, \text{R}_2 = 2\text{-naphthyl}, \text{H}$
- c** : $\text{R}_1, \text{R}_2 = \text{Ph}, \text{Me}$
- d** : $\text{R}_1, \text{R}_2 = 2\text{-naphthyl}, \text{Me}$
- e** : $\text{R}_1, \text{R}_2 = \text{OMe}, \text{Me}$

- a** : $\text{R}_1, \text{R}_2 = \text{Ph}, \text{Ph}$
- b** : $\text{R}_1, \text{R}_2 = \text{Ph}, p\text{-methoxy Ph}$
- c** : $\text{R}_1, \text{R}_2 = \text{Ph}, 2\text{-furyl}$
- d** : $\text{R}_1, \text{R}_2 = 2\text{-naphthyl}, \text{Ph}$
- e** : $\text{R}_1, \text{R}_2 = 2\text{-naphthyl}, p\text{-methoxy Ph}$
- f** : $\text{R}_1, \text{R}_2 = 2\text{-naphthyl}, 2\text{-furyl}$

- a** : $\text{R}_1, \text{R}_2, \text{R}_3 = \text{Me}, \text{Me}, \text{Me}$
- b** : $\text{R}_1, \text{R}_2, \text{R}_3 = \text{Me}, \text{Et}, \text{Me}$
- c** : $\text{R}_1, \text{R}_2, \text{R}_3 = \text{Me}, \text{Ph}, \text{Me}$
- d** : $\text{R}_1, \text{R}_2, \text{R}_3 = \text{Me}, \text{Me}, \text{H}$
- e** : $\text{R}_1, \text{R}_2, \text{R}_3 = \text{Me}, \text{Et}, \text{H}$
- f** : $\text{R}_1, \text{R}_2, \text{R}_3 = \text{Me}, \text{Ph}, \text{H}$

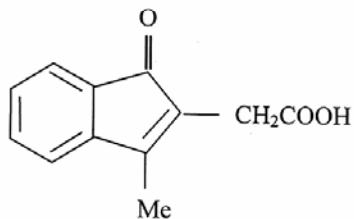


Figure 1

*t*BuOH, was added a neat mixture of **1c** (1.92 g, 10 mmoles) and benzaldehyde (1.06 g, 10 mmoles) and stirred for 1 hr. The reaction mixture was neutralized with ice-cold 3N HCl and the tertiary butanol removed under reduced pressure. After extraction with diethyl ether and washing with 10% sodium bicarbonate solution under ice-cold conditions, acidification resulted in the isolation of crude β -benzylidene β -benzoyl propionic acid **2a** in 55.2% yield which was recrystallized from benzene-*n* hexane. The same reaction was tried by solvent free method in which a neat mixture of **1c** (1.92 g, 10 mmoles) and benzaldehyde (1.06 g, 10 mmoles) was taken in a dry mortar and to it was added dried solid potassium tertiary butoxide (1.13 g, 10 mmoles) well ground with a pestle at RT for 10 min. The reaction was

exposed to air. After usual work-up¹⁰ and recrystallisation from benzene-*n* hexane, **2a** was obtained in 62.31% yield. The yield was increased to 66.11% when the same reaction was carried out by heating the reaction mixture at 80°C for 10 min.

Similarly, anisaldehyde (1.36 g, 10 mmoles) and furfural (0.96 g, 10 mmoles) gave **2b** and **2c** respectively. The characterization of the products were done by melting point, mixed melting point, equivalent weight determination by titration method and by spectral (UV-Vis, IR¹⁵, NMR) analysis (Table I). Solvent-free Stobbe condensation was carried out using methyl β -naphthoyl propionate **1d** (2.42 g, 10 mmoles) with benzaldehyde (1.06 g, 10 mmoles) and dried potassium *tert*. butoxide (1.13 g, 10 mmoles) to give β -benzylidene β -naphthoyl

Table I — NMR chemical shift (δ) data

Compd	Type of proton					
	Aromatic	C=C—H	OCH ₃	CH ₂	CH ₃	CH ₃ —CH ₂
2a	7.84(5H)s, 7.62(5H)s	7.5(1H)s	—	2.57(2H)s	—	—
2b	7.52(5H)s, 7.73(5H)s	8.03(1H)s	3.89(3H)s	1.57(2H)s	—	—
2c	7.26(5H)s, 7.47(3H)m	7.48(1H)s	—	0.88(2H)s	—	—
2d	7.44(7H)s, 8.00(5H)s	8.01(1H)s	—	0.54(2H)s	—	—
2e	7.53(7H)s, 7.71(5H)s	7.35(1H)s	2.59(3H)s	1.2(2H)s	—	—
2f	7.14(7H)s, 6.53(3H)m	7.15(1H)s	—	2.2(2H)s	—	—
3a	—	—	3.74(3H)s	3.44(2H)s	1.86(3H)s	—
					2.19(3H)s	—
3b	—	—	3.7(3H)s	3.45(2H)s	1.86(3H)s	2.19(2H)q
					2.14(3H)s	2.52(2H)q
						1.06(3H)t
						1.09(3H)t
3c	7.15(5H)s	—	3.65(3H)s	3.25(2H)s	2.02(3H)s	—
3d	—	—	—	3.27(2H)s	1.83(3H)s	—
					2.1(3H)s	—
3e	—	—	—	3.36(2H)s	1.88(3H)s	0.9-1.24(3H)t
						2.04-2.38(2H)q
3f	7.37(5H)s	—	—	3.2(2H)s	2.39(3H)s	—
4	6.4-7(4H)m	—	—	9.26(2H)s	2.49(3H)s	—

Table II — Physical characterization data

Compd	Mol. Formulae	m.p. °C Found	Lit. m.p. °C	Yield (%)			Equivalent Weight	
				Traditional	Green (RT)	Green (80°C)	*Found	(Calcd)
2a	C ₁₇ H ₁₄ O ₃	132	129	55.20	62.30	66.11	262.90	(266.26)
2b	C ₁₈ H ₁₆ O ₄	115	-	48.20	52.11	77.90	290.56	(296.28)
2c	C ₁₅ H ₁₂ O ₄	186	-	52.14	54.76	78.34	252.89	(256.22)
2d	C ₂₁ H ₁₆ O ₃	104	-	61.05	63.96	69.21	315.94	(316.33)
2e	C ₂₂ H ₁₈ O ₄	178	-	76.01	78.96	85.70	339.50	(346.34)
2f	C ₁₉ H ₁₄ O ₄	130	-	59.29	65.29	71.50	301.85	(306.28)
3a	C ₈ H ₁₂ O ₄	Oil	58	60.00	72.00	-	171.00	(172.14)
3b	C ₉ H ₁₄ O ₄	103-05	105	62.00	78.00	-	186.20	(186.17)
3c	C ₁₃ H ₁₄ O ₄	106-07	107-09	88.00	95.00	-	236.00	(234.21)
3d	C ₇ H ₁₀ O ₄	164	165	78.00	85.00	-	80.08	(79.06)
3e	C ₈ H ₁₂ O ₄	147-49	149	76.00	83.00	-	85.40	(86.07)
3f	C ₁₂ H ₁₂ O ₄	162(E)	164	92.00	95.00	-	110.11	(110.09)
			150(Z)					
4	C ₁₂ H ₁₀ O ₃	169.8	-	-	72.00	-	202.02	(202.18)

*Possibility of bond migration at 80°C for **3a-f**

propionic acid **2d** in 63.96% yield. Similarly, anis-aldehyde (1.36 g, 10 mmoles) and furfural (0.96 g, 10 mmoles) gave **2e** and **2f** respectively in 78.96% and 65.29% yield. The yields were further improved at 80°C (**Table II**, compounds **2a-f**).

1,1-Alkylidene monomethyl succinate, **3a,b**

1,1-Arylidene monomethyl succinate, **3c**

To a solution of 1 g potassium in 25 mL tertiary butyl alcohol under inert anhydrous conditions, was added a homogenous mixture of **1e** (1.4 g, 10 mmoles) and acetone (0.58 g, 10 mmoles) and stirred for 1 hr. Usual work up¹⁶ and recrystallization from benzene pet. ether gave 1,1-isopropylidene monomethyl succinate **3a** in 60% yield. The yield was improved to 72% by solvent-free method in which a clear mixture of **1e** (1.4 g, 10 mmoles), acetone (0.58 g, 10 mmoles) and dried potassium tertiary butoxide (1.13 g, 10 mmoles) was taken in a mortar, well ground with a pestle, stirred for 10 min, exposed to air and worked up¹⁰. Solvent free Stobbe condensation was done using ethyl methyl ketone (0.72 g, 10 mmoles) and acetophenone (1.2 g, 10 mmoles), each with **1e** (1.4 g, 10 mmoles) to give the acid-esters **3b** and **3c** respectively in 78% and 95% yield.

1,1-Alkylidene succinic acid, **4a,b**

1,1-Arylidene succinic acid, **4c**

1,1-Isopropylidene monomethyl succinate **3a** (1.72 g, 10 mmoles) was added to 30 mL 8% alcoholic KOH solution and refluxed for 8 hr. After filtration and cooling to 0°C, the acidification of reaction mixture with ice-cool conc. HCl gave 1,1-isopropylidene succinic acid **3d** and recrystallized from etha-

nol-water as pale yellow solid. Similarly, acid-esters **3b** (1.78 g, 10 mmoles) and **3c** (2.34 g, 10 mmoles) were saponified to the corresponding diacids **3e** (as non-separable *E-Z* isomers) and **3f** (separable into *E* and *Z* isomers) respectively.

Acknowledgement

The authors are thankful to SAIF, Panjab University for spectral facilities and to UGC and Alumni Association of Science College of Nagpur, for financial support.

References

- 1 Sanghi R & Srivastava M M, *Green Chemistry*, (Narosa Publishing House), **2003**.
- 2 Borshe W, *Chem Ber*, **47**, **1919**, 1108.
- 3 Deshmukh S S, *Ph.D. Thesis*, Nagpur University, Nagpur, **1992**.
- 4 Stobbe H & Gollucke F, *Chem Ber*, **39**, **1906**, 1066.
- 5 Stobbe H & Noetzel M, *Chem Ber*, **39**, **1906**, 1070.
- 6 Stobbe H, *Chem Ber*, **37**, **1904**, 1619.
- 7 Borshe W, Kettner S, Gillies M, Kuhn H & Manteuffel R, *Ann Chem*, **526**, **1936**, 1.
- 8 El Abbady A M & El Assal L S, *J Chem Soc*, **1959**, 1024.
- 9 Johnson W S & Daub G H, *Org React*, **6**, **1951**, 1.
- 10 Tanaka K, Sugino T & Toda F, *Green Chemistry*, **2**, **2000**, 303.
- 11 Johnson W S, Mec Closkey A L & Dunningan D A, *J Am Chem Soc*, **72**, **1950**, 514.
- 12 Jabbar S, *Ph. D. Thesis*, Nagpur University, Nagpur, **1994**.
- 13 Potapov V M, *Stereochemistry* (MIR Publishers, Moscow), **1979**, 34.
- 14 Kemp W, *Organic Spectroscopy* (Macmillan Publishers Ltd., London), **1975**, 100.
- 15 Bellamy L J, *I.R. Spectra of complex molecules* (Methuen and Co. Ltd., London), **1956**, 152.
- 16 Bagavant G & Banerjee S, *Current Science*, **44**, **23**, **1975**, 846.